Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 113, No. 4, August 2001, pp 291–296 © Indian Academy of Sciences

Histidine as a catalyst in organic synthesis: A facile *in situ* synthesis of **a**, N-diarylnitrones

H MALLESHA, K R RAVI KUMAR, B K VISHU KUMAR, K MANTELINGU and K S RANGAPPA* Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India e-mail: rangappaks@yahoo.com

MS received 1 February 2001; revised 12 April 2001

Abstract. a, N-diarylnitrones were synthesized by the reduction of a mixture of nitro- and benzaldehyde derivatives with zinc dust using histidine as a catalyst.

Keywords. a, N-diarylnitrones; zinc dust; organic synthesis; histidine as catalyst.

1. Introduction

Nitrones are versatile synthetic intermediates in organic synthesis ^{1–8}. Some nitrones are used for trapping and identification of reactive free radicals⁹, particularly in biomedical research¹⁰. They are also used in the synthesis of many nitrogen-containing biologically active compounds ^{11,12}. Recently, we synthesized some **a**, N-diarylnitrones, which can be used for the synthesis of model and ultimate carcinogens¹².

Nitrones are generally prepared either by the condensation of carbonyl compounds with hydroxylamines¹³ or the oxidation of the corresponding hydroxylamines²⁻⁷.

 $R-NO_2 \xrightarrow{2[H]} R-NO \xrightarrow{2[H]} R-NHOH \xrightarrow{2[H]} R-NH_2$

Reduction of nitro- compounds proceeds through intermediate stages involving nitroso and hydroxylamine to form amines. Since N-arylhydroxylamines are less stable because of their photosensitivity¹⁴ and sensitivity to acid, they are further reduced to the corresponding amines. A literature survey reveals that the formation of an amine in addition to hydroxylamine, results in formation of an imine, azoxy compound¹⁵, azobenzene¹⁶ etc., which makes separation difficult and also in low yields of desired product.

To minimise these difficulties, we have made an attempt to synthesize \mathbf{a} , N-diarylnitrones (**3a**-**j**) in good yield by the reduction of a mixture of nitro and benzaldehyde derivatives with zinc dust using histidine as a catalyst. Histidine provides significant buffering power near the neutral *p*H, which is very essential for the synthesis of \mathbf{a} , N-diarylnitrones. Similar reaction was carried out with other amino acids like glycine, alanine, valine, leucine and proline as catalysts but the results were poor because

^{*}For correspondence

292 H Mallesha et al

of their pK_a values, which are too far away from pH = 7.0. Therefore, histidine is a suitable catalyst for this reaction.

2. Experimental

2.1 Materials and methods

All the nitro compounds and carbonyl compounds used were of commercial grade (Aldrich, E-Merck and Acros) and were purified prior to use either by distillation or by recrystallization. Histidine (E-Merck) was used as such. Petroleum ether (Fisher) and ethylacetate (E-Merck) were purified by distillation before use. Double distilled water, HPLC grade DMF and freshly distilled acetic anhydried were used.

¹H NMR spectra were obtained in CDCl₃ at 60 MHz. IR spectra were recorded on FTIR-8300. Melting points were measured on Selaco-605 melting point apparatus and are uncorrected.

2.2 Preparation of 3d (general procedure)

To a cold solution of equimolar nitrobenzene, benzaldehyde and catalytic amount of histidine in water–ethanol–N, N-dimethylformamide (7:2:1), zinc dust was added in five parts in 60 min by continuous stirring (-5° C). *p*H of the solution was maintained at 7·2–7·4 throughout the reaction by adding freshly distilled acetic anhydride. Further, the reaction mixture was stirred at -5° C for about 30 min. The reaction mixture was filtered and evaporation of the solvent on a rotary evaporator gave a solid. It was dissolved in 5 ml of an ethylacetate–petroleum ether (1:4) mixture and chromatographed over silica gel-60. Elution with same solvent mixture gave the pure product (**3d**).

3i: ¹H NMR: 2·42 (*s*, 3H, Ar-CH₃); 7·71–7·81(*m*, 5H, Ar-H); 7·1–7·5 (*m*, 2H, Ar-H); 7·79 (*s*, 1H, CH=N); 8·01–8·32 (*m*, 2H, Ar-H); Analysis – Cald. for C₁₄H₁₃NO: C, 79·43 H, 6·15; N, 6·85%. Found: C, 79·4; H, 6·14; N, 6·85%. IR \mathbf{n}_{cm}^{-1} : 1572 (C=N), 1200 (NO). GC-MS, *m*/*z*: 211 (*M*⁺), 194 (base peak); ¹³C NMR (DMSO-*d*₆) **d**: 31·14 (C–CH₃), 127·42, 128·47, 128·95, 129·02, 129·95 (CH=N), 130·26, 130·67, 134·63, 144·29, 148·93.

3j: ¹H NMR: 7·2–7·68 (*m*, 5H, Ar-H); 7·7–7·9 (*m*, 2H, Ar-H); 7·83 (*s*, 1H, CH=N); 8·12–8·52 (*m*, 2H, Ar-H); Analysis – Cald. for $C_{13}H_{10}NOC1$: C, 67·24; H, 4·31; N, 6·25%. Found: C, 67·23; H, 4·32; N, 6·23%; IR \mathbf{n}_{cm}^{-1} : 1554 (C=N), 1202 (NO); GC-MS, *m/z*: 231·5 (*M*⁺), 214·5 (base peak); ¹³C NMR (DMSO-*d*₆) δ : 127·55, 128·59, 128·94, 129·14, 130·02 (CH=N), 131·93, 132·37, 132·41, 133·17, 148·21, 149·11.

3. Results and discussion

A series of **a**, N-diarylnitrones $3\mathbf{a}-\mathbf{j}$ (table 1) were synthesized by the reduction of nitroand benzaldehyde derivatives at *p*H 7·2–7·4 with zinc dust in water–ethanol–N, Ndimethylformamide (7:2:1) containing catalytic amount of histidine.

$$R-NO_{2} + R_{1}-CHO \xrightarrow{Zn/H_{2}O-EtOH-DMF}_{\text{Histidine (catal)}} \xrightarrow{R_{1}}_{H} \xrightarrow{P}_{R}$$

$$1a-j \quad 2a-j \qquad -5^{\circ}C, \quad Ac_{2}O \qquad 3a-j$$

Histidine as a catalyst in organic synthesis

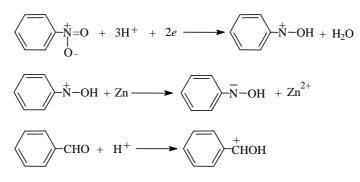
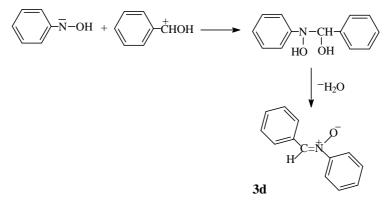
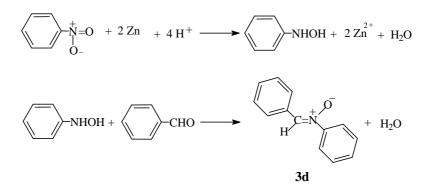

R ₁ CH=N(O)R						
Compound	R ₁	R	m.p.(°C)	Reported m.p. (°C)	Time (min)	Yield (%)
3 a	4-NMe ₂ C ₆ H ₄	C ₆ H ₅	138–139	138 18	80	81
3b	$4-OHC_6H_4$	C_6H_5	208	210^{19}	80	83
3c	4-OMeC ₆ H ₄	C_6H_5	118	118^{12}	85	87
3d	C ₆ H ₅	C_6H_5	115	112–114 ²⁰	90	92
3e	$4-ClC_6H_4$	C_6H_5	154	153–154 ²¹	90	90
3f	$4-NO_2C_6H_4$	C_6H_5	191	190 ²²	95	89
3g	C ₆ H ₅	$4 - MeC_6H_4$	123-125	124–125 ²³	70	92
3h	C ₆ H ₅	$4-ClC_6H_4$	180	181 ⁷	75	88
3i	C_6H_5	$3 - MeC_6H_4$	76–79	a	90	79
3j	C_6H_5	$3-ClC_6H_4$	95–96	a	90	84

Table 1. Preparation and physical parameters of *a*, N-diarylnitrones 3a-j.


^anot reported

3.1 Reduction of nitrobenzene and benzaldehyde

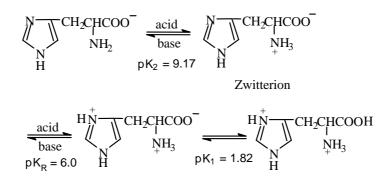
When nitrobenzene, benzaldehyde, zinc dust and catalytic amount of histidine in waterethanol-N, N-dimethylformamide of pH 7·2-7·4 maintained by the addition of acetic anhydride and this was stirred at -5° C gave **a**, N-diarylnitrone **3d**. The reaction appears to proceed through the following mechanism.



The first phase of reduction followed by the reaction of $Ph-\overline{N}-OH$ and $Ph-\overset{+}{C}HOH$ results **3d**.

294 H Mallesha et al

The above reaction is affected by an intermediate of phenylhydroxylamine which reacts with benzaldehyde to also give 3d.


3.2 Role of histidine

A mixture consisting of nitrobenzene, benzaldehyde, zinc dust, water-ethanol-N, Ndimethylformamide (7:2:1) at pH about 5.3, yields products aniline, nitrosobenzene, azobenzene, hydrazobenzene, azoxybenzene and 10% of 3d. Condensation of nitrosobenzene and aniline give azoxybenzene¹⁶, which is reduced by zinc dust to hydrazobenzene. Azoxybenzene, which may be produced by disproportionation of phenylhydroxylamine¹⁵ or by condensation of nitrobenzene and phenylhydroxylamine 15a , may also be the precursor of hydrazobenzene. Thus, the desired product **3d** is obtained in low yield at pH \approx 5.3, and hence the pH of the reaction media plays an important role. Of the 20 standard amino acids, only histidine has a side chain $(pK_a = 6.0)$ providing significant buffering power near the desired pH. All other amino acids have pK_a values too far away from pH 7.0. In order to improve the yield of product, histidine was used as a catalyst and the pH was increased and maintained constantly in the range $7 \cdot 2 - 7 \cdot 4$ by the addition of acetic anhydride. The addition of acetic anhydride rapidly produces the basic product Ph-N-OH which reacts with Ph-CHOH to give 3d. These two oppositely charged ions are acid sensitive. Therefore, balanced concentration of H⁺ ions in the media is most favourable for the formation of 3d. This was effectively achieved by the addition of catalytic amounts of histidine which balances the concentration of H⁺ ions at pH range 7.2–7.4 through its zwitterions 17 . We did not observe the presence of benzyl alcohol at pH 7.2-7.4. Thus, combining two oppositely charged ions is most favourable in the presence of histidine in the 7.2–7.4 pH range to obtain 3d.

3.3 Temperature and solvent

Nitrobenzene was also reduced by zinc dust at room temperature and gave only 5% of **3d**. This implies that the efficiency of the reaction is particularly interesting if it operates at -5° C. Poor results were obtained when **1a–j** and **2a–j** are reduced by zinc dust using any one of the solvents water, ethanol, chloroform, ether or dimethylformamide individually. Best results were obtained in a solvent mixture of water–ethanol–N, N-dimethylformamide in the ratio of 7:2:1.

Histidine as a catalyst in organic synthesis

3.4 Reduction of substituted nitro derivatives

The order of ease of reduction of *p*-substituted benzaldehyde is $NMe_2 > OH > OMe > H > Cl > NO_2$, i.e. the order of their electron-releasing properties. In *p*-substituted nitrobenzene the ease of formation of $R-\overline{N}OH$ is Cl > Me and *m*-substituents have little effect.

Acknowledgements

We are grateful to the Department of Science and Technology, New Delhi, for financial support.

References

- 1. Torssell K B G 1988 *Nitrile oxides, nitrones, and nitronates in organic synthesis* (New York: VCH)
- (a) Patai S 1970 The chemistry of the carbon-nitrogen double bond (New York: Wiley) (b) Tennant G 1979 In Comprehensive organic chemistry (eds) D H R Barton and W D Ollis (New York: Pergamon) vol. 2
- 3. Sandler S R and Karo W 1972 *Organic functional group preparations* (New York: Academic Press) vol. 3
- 4. Confalone P N and Huie E M 1988 *The* [3 + 2] nitrone-olefin cycloaddition reaction in organic reactions (New York: Wiley) vol. 36
- 5. Padwa A 1984 1,3-Dipolar cycloaddition chemistry (New York: Wiley) vol. 2, pp 83
- 6. Hamer J and Macaluso A 1964 Chem. Rev. 64 473
- 7. Delpierre G R and Lamchen M Q 1965 Rev. Chem. Soc. 19 329
- 8. Jeremiah P and Freeman 1983 Chem. Rev. 83 241
- 9. Barton D H R and Beaton J M 1960 J. Am. Chem. Soc. 82 2641
- 10. Hensley K, Carney J M, Stewart C A, Tabafabaie T, Pye Q and Floyd R A 1999 Int. Rev. Neurobiol. 40 299
- 11. Ohtake H, Imada Y and Murahahi S I 1999 J. Org. Chem. 64 3790
- (a) Mallesha H 2001 Ph D thesis, University of Mysore (submitted); (b) Tamagaki S and Oae S 1970 *Bull. Chem. Soc. Jpn* 43 1573; (c) Mallesha H, Ravi Kumar K R, Mantelingu K and Rangappa K S 2001 *Synthesis* 10 1459; (d) Mallesha H, Ravi Kumar K R and Rangappa K S 2001 (in press)
- (a) Meisenheimer J and Chou J L 1939 Analyser 78 539; (b) For a review of nitrone chemistry, see (i) Breuer E 1982 The chemistry of amino nitroso and nitro compounds and their derivatives (ed.) S Patai (New York: John Wiley) p. 459, (ii) Ref. (2)(b) and (3)

296 H Mallesha et al

- (a) Splitter J S and Calvin M 1958 J. Org. Chem. 23 651; (b) Kamlet M J and Kaplan L A 1957 J. Org. Chem. 22 576; (c) Shindo H and Umezawa B 1962 Chem. Pharm. Bull. Jpn. 10 492
- (a) Bamberger E and Brady F 1900 *Berichte* 33 271; (b) Bamberger E and Renauld E 1897 30 2278
- 16. (a) Baeyer A 1874 Berichte 7 1638; (b) Mills C 1895 J. Chem. Soc. 67 928
- (a) Roberts J D and Caserio M C 1967 Basic principles of organic chemistry (Menlo Park, CA: WA Benjamin) (b) Lehninger A L, Nelson D L and Cox M M 1993 Principles of biochemistry (Delhi: CBS) pp 120
- 18. Splitter J S and Calvin M 1955 J. Org. Chem. 20 1086
- 19. Jolles E 1938 Gazz. Chim. Ital. 68 488
- 20. Bellevita V 1935 Gazz. Chim. Ital. 65 879
- 21. Grammaticakis P 1951 Bull. Soc. Chim. Fr. 18 965
- 22. Murrey R W and Singh M 1990 J. Org. Chem. 55 2955
- 23. Wheeler O H and Gore P H 1956 J. Am. Chem. Soc. 78 3363